Characterisation of SilenciX® cell lines as a stable, syngenic and loss-of-function model

Anne-Marie RENAUD, PhD - Christelle CATONE, PhD

INTRODUCTION
Silencing is today the most adopted method to study gene function. The most classic approaches are based on siRNA expressed in the cell through different channels like transient transfection of RNA duplexes, of plasmids or of virus expressing RNA constructs. While efficient, these strategies suffer from the lack of stability that renders study of some proteins challenging. To overcome this issue, short hairpin RNAs (shRNA) can be used to increase stability but they disrupt genomic integrity. Our solution to this technical challenge is SilenciX®. Derived from our in-house technical knowledge and scientific collaboration, SilenciX® combines RNAi technology, DSIR Program and pEBV (Epstein Barr Virus) derived vector to generate knock-down clones in numerous cell lines covering various fields of research.

To demonstrate the advantages of a stable and functional model to study loss-of-function, we have chosen here the example of Xeroderma Pigmentosum, complementation group C (XPC). XPC is a major protein of the nucleotide excision repair (NER) pathway involved in damage recognition, open complex formation, and repair protein complex formation.

Mutations in this gene or some other NER components result in Xeroderma pigmentosum, a rare autosomal recessive disorder characterized by increased sensitivity to sunlight with the development of carcinomas at an early age.

MATERIAL & METHODS
Cell line establishment and culture
HeLa cells were transfected using Lipofectamine2000 with SilenciX® vectors(1), (2) containing siRNA for XPC and control sequence. We established XPC SilenciX® cell lines, Control SilenciX® cell lines. Cells were grown with D-MEM containing 4.5g/l D-glucose, 5.88mg/l L-glutamine and 110mg/l sodium pyruvate, supplemented with 10% fetal bovine serum, 1% penicillin and streptomycin (10,000 U/ml, 10,000 µg/ml), and 12µg/ml hygromycin B (Life Technology) was added to the culture media to maintain EBV vectors into the cells.

qRT-PCR
RNA was isolated from both cell lines (control and knock-down) using the Nucleospin RNA II (Machery-Nagel) and according to the manufacturer’s instructions for mammalian cells. Reverse transcription was realized with RT-1 first strand kit and RT-2 SYBR Green Master Mixes according to the manufacturer’s instructions. (cat numbers C-03- and 333520 BSAEissues, a Qiang company). Real-time PCR in XPC Hela SilenciX® cells was performed in comparison with Control Hela using primers set for GAPDH, Actin and XPC (cat number PPH00150, PPH00015A1 and PPH00153A1, BSAEissues, a Qiang company).

WB analysis
Western-blot was realized as described as follow: total protein equivalent to 600,000 cells were isolated, subjected to 10% SDS polyacrylamide gel electrophoresis and electro-transfered onto nitrocellulose membranes. Antibodies used: mouse polyclonal antibody XPC, monoclonal antibodies Ku70/80 (cl.162), DNA-PKcs (cl. 18.2), Lab Vision/Neomarkers, Newmarket, United Kingdom), human kin17 protein (lg K66 and lg K58), rabbit polyclonal antibodies directed against XPC and Ku70/80 (AbD Serotec, Cergy Saint-Christophe, France), ligase IV (Abcam, Cambridge, United Kingdom).

Clonogenic cell survival
For clonogenic growth after UVC irradiation, cells were plated at 500 cells per dish (6cm) and irradiated 24 hours later. Growing clones were fixed with 4% paraformaldehyde and stained with methylene blue after 14 days of culture. Clones containing more than 50 cells were counted. Each point represents the mean of three culture dishes. Colony formation was normalized as a percentage of the control.

RESULTS AND DISCUSSION
EBV-based plasmid vectors carry oriP (origin of replication) and EBNA1 gene. Inside the cells, ORIP interacts with EBNA1 to promote episomal maintenance thus keeping the vector extrachromosomally over long periods of time. This property allows the vector to be stably transmitted to daughter cells (reinforced by hygromycin B selection) without impairing genome integrity. By cloning shRNA sequence into the plasmid, we aimed to obtain long term stable down regulated expression of XPC in cultured human cell lines. Thus, genome integrity is ensured, the vector is thus perfectly maintained.

qRT-PCR Analysis
Our first attempt to assess silencing efficiency was to perform qRT-PCR experiments. qPCR analysis shows a decrease of 81% for XPC gene. These results confirmed the efficiency of our silencing at RNA level.

Western Blot
There is today no direct correlation between mRNA and protein levels of expression within the cell. With this in mind, we performed WB experiments on control and silenced cells. WB analysis was performed on Hela cell and control (3)

It also shows that the other proteins tested (XRCC4, Ligase IV, Ku70/80) were expressed normally in silenced cells. Furthermore, the different times tested (up to 315 days) demonstrate the stability of the EBV-Based plasmid vector in a silencing strategy.

Taken together, qRT-PCR and WB experiments show that we have generated a cell line presenting a long term stable down regulated expression of XPC.

In this study, we demonstrate why XPC SilenciX® cell line is a functional model to study loss of function.

Our technology, a combination of RNAi Technology and pEBV-derived vector creates a syngenic model which allows to mimic human diseases in a comparable genetic background. Our technology brings Stability, efficiency and functionality. The long-term maintenance of gene silencing in syngenic cells may open new areas of research, in particular in the field of cancer to improve target validation in a synthetic lethality approach or to evaluate efficacy of inhibitors.

REFERENCES

www.tebu-bio.com