• Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
  • Facebook
  • LinkedIn
  • Twitter
  • Vimeo
Home
Research areas
    ADME-Tox
    Biomarkers
    Cell Biology and Signalling
    Cell Sourcing - Cell Culture Technologies
    Drug Discovery
    Gene Expression - Molecular Biology
    Stem Cells
    Supplying Discovery Tools
Contact us
Meet the authors
Tebubio's blog - Acting and reacting in life sciences and biotechnologies
  • Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
Supplying Discovery Tools

Microtubules and Neuronal Polarity

04/10/2018 by Frédéric Samazan No Comments

Neuronal polarity is essential for the proper development, growth, and physiology of neurons. Within neurons, microtubules (MTs) and motor protein polarities are required for establishing and maintaining neuronal polarity. However, unanswered questions remain: 1. Why are some cytoplasmic molecules in axons but not dendrites? 2. How do MAPs become compartmentalized differently in each type of neurite? 3. Why does a neuron have a single axon but multiple dendrites?5

To help you, the researcher, to answer these questions (as well as many others regarding MT functions in the central nervous system!) for a number of years now we’ve been providing a reliable range of kits by Cytoskeleton Inc. Their highly useful reagents include the Signal-Seeker Enrichment kits for quantifying levels of endogenous PTMs such as acetylation, tyrosine phosphorylation, ubiquitination, and SUMOylation, as well as purified cytoskeletal proteins (e.g., actins, tubulins, kinesin and dynein motors) and functional assay kits to measure the activities of these same proteins.

Continue reading
Supplying Discovery Tools

Therapeutic Target – Ubiquitin-Proteasome system: What about tubulin?

22/05/2018 by Frédéric Samazan No Comments

The ubiquitin-proteasome system (UPS) is a well-characterized protein degradation system in cells whose dysfunction is implicated in many diseases, including neurodegeneration and cancer1,2. Major UPS components are ubiquitin (Ub), Ub ligases, Ub hydrolases (deubiquitinases [DUBs]), and the proteasome.

Continue reading
Supplying Discovery Tools

Fluorescence microscopy: how to improve your Live Cell Imaging

09/03/2017 by Frédéric Samazan No Comments

For more than 2 years now, the Silicon Rhodamine-like (SiR) technology has allowed the live cell imaging field with fluorescence microscopy to evolve significantly.

Fluorescent SiR-probes have appeared as the best alternative tools for studying Actin (SiR-actin), Microtubules (SiR-Tubulin), DNA (SiR-DNA) and now lysosome (SiR-Lysosome) for live cell imaging. Who better to show this? Well, here’s how other researchers have been using them to get optimal results.

Continue reading
Cell Biology and Signalling

SiR fluorogenic probes: multicolour live-cell Imaging of Actin, Tubulin, DNA, and Lysosomes

05/09/2016 by Ali El Baya, PhD No Comments

The Silicon Rhodamine-like (SiR) technology has significantly contributed to the recent development of DNA and cytoskeletal analysis by live cell imaging.

Spectrum SiR 655. Spirochrome - tebu-bio.In 2014, two new Silicon Rhodamine-like (SiR) fluorescent probes were released for studying actin & tubulin by live cell imaging. SiR-Actin and SiR-Tubulin are fluorescent probes compatible with most microscopes (including super-resolution settings) that directly stain actin & tubulin without the need to transfect cells with vectors expressing fluorescently labeled Actin or Tubulin. The two original dyes were successfully followed by a new SiR-DNA probe in order to visualize DNA in living cells.

The existing SiR stains have a λabs of 652 nm and a λem of 674 nm to be used with the Cy5 filter (Fig 1).

However, the continuously growing number of researchers using these stains asked us whether stains with different biophysical properties would be made available. In other words, they were asking “is there another colour to allow for double staining e.g. of Actin and Tubulin in living cells?”

Continue reading
Page 1 of 61234»...Last »

Most popular posts

  • HeLa cells: Origin of this important cell line in life science research
  • From RUO to IVD - the acronym guide to reagents' intended use
  • How to choose the perfect buffer to get a pure, stabilised, functional protein
My Tweets

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy

Copyright © 2018 - tebu-bio - visit our main website at tebu-bio.com

 

Loading Comments...