• Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
  • Facebook
  • LinkedIn
  • Twitter
  • Vimeo
Home
Research areas
    ADME-Tox
    Biomarkers
    Cell Biology and Signalling
    Cell Sourcing - Cell Culture Technologies
    Drug Discovery
    Gene Expression - Molecular Biology
    Stem Cells
    Supplying Discovery Tools
Contact us
Meet the authors
Tebubio's blog - Acting and reacting in life sciences and biotechnologies
  • Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
Supplying Discovery Tools

Cell signalling – Discover G-LISA to study Small GTPases

21/06/2018 by Frédéric Samazan No Comments

As is already known, multiple families of small GTPases (Ras, Arf and Rho families) make up the Ras cell signalling - GTPase molecular cycleGTPase superfamily. Due to their role as molecular switches in cell signalling (active GTP-bound state vs inactive GDP-bound states) and in many other cellular responses (cytoskeletal reorganization, regulation of transcription, apoptosis…), these small GTPases are the subject of intense investigation to try to understand the mechanisms that regulate activation and inactivation of this proteins.

In this post, I invite you to discover a revolutionary way to study these cell signalling events by quantifying the level of active small GTPases in your experimental model.

Continue reading
Cell Biology and Signalling

Cell signalling studies: Tips for selecting the best Small G Protein activation assay

25/04/2018 by Frédéric Samazan No Comments

Small GTP-binding proteins such as Rho and Ras GTPase family members are involved in regulating cell signalling pathways and impact a wide range of cellular processes, functions, and morphology. In this post, you’ll discover two types of Small G-protein Activation Assays to easily measure the GTP-bound form of your protein of interest, as well as some tips for choosing between both solutions and finding the assays that fit best with your cell signalling experiments.

Continue reading
Cell Biology and Signalling

2 assays to assess GEF and GAP activity

16/11/2015 by Ali El Baya, PhD 2 Comments

In my previous post Small GTPases: Measuring small G protein activation I looked at state-of the-art methods for measuring the activation of small G proteins, such as RhoA, Rac1, Cdc42, and the proto-oncogen Ras. Today, I invite you to explore some methods for measuring the activity of Guanine nucleotide Exchange Factors (GEFs).

Continue reading
Cell Biology and Signalling

Detect different isoforms of Rho, Ras and Rac

06/11/2014 by Ali El Baya, PhD No Comments

small-g-protein-inactivationRas and Rho family members are small G proteins involved in the regulation of actin-dependent cell processes such as motility, growth, and intracellular trafficking. Furthermore, dysfunctions of Ras and Rho proteins are known to be correlated with a number of diseases (cancer, neurodegeneration).

Small G proteins cycle between the inactive, GDP-bound form and the active, GTP-bound form.

G-LISA technology: state of the art small G protein activation measurement

Cytoskeleton, Inc. offers activation kits for a number of small G proteins (RhoA, Rac1, Cdc42, Ras, RalA, Arf1, Arf6). All these assays are available as G-LISA formats, a 96 well based technology, in which a protein sequence specifically binding to the activated for of the respective small G protein is coupled to the bottom of the wells and “catches” activated, GTP-bound proteins from cell lysates derived from cultured cells. The activation status of the small G protein can thus be detected in an ELISA like, quantitative approach.

A number of recently published papers using Cytoskeleton’s G-LISA kits show that not only RhoA and Rac1 can be measured with the RhoA-G-LISA and Rac1 G-LISA, respectively. By changing the antibody which is finally used to detect the activated small G protein bound to the binding protein one can e.g. differentiate between the isoforms RhoA, RhoB, and RhoC, and even RhoJ (which shows a high homology with Cdc42).

In their November newsletter Cytoskeleton Inc. summarized these publications and give valuable information and tips how to broaden the target specificity of their G-LISA kits.

Download your free copy of the newsletter GTPase Activation Assays: Detecting Different Isoforms

Any questions about using G-LISA? Fire away below!

Page 1 of 212»

Most popular posts

  • HeLa cells: Origin of this important cell line in life science research
  • From RUO to IVD - the acronym guide to reagents' intended use
  • How to choose the perfect buffer to get a pure, stabilised, functional protein
My Tweets

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy

Copyright © 2018 - tebu-bio - visit our main website at tebu-bio.com

 

Loading Comments...