• Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
  • Facebook
  • LinkedIn
  • Twitter
  • Vimeo
Home
Research areas
    ADME-Tox
    Biomarkers
    Cell Biology and Signalling
    Cell Sourcing - Cell Culture Technologies
    Drug Discovery
    Gene Expression - Molecular Biology
    Stem Cells
    Supplying Discovery Tools
Contact us
Meet the authors
Tebubio's blog - Acting and reacting in life sciences and biotechnologies
  • Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
Gene Expression - Molecular Biology, Supplying Discovery Tools

rRNA depletion, poly(A) enrichment, or exonuclease treatment?

04/06/2015 by Mark Livingstone No Comments

RNASeq studies are hampered by the pervasive excess of reads mapping to ribosomal RNA (rRNA), notorious for greatly reducing the amount of useful mRNA sequencing data. Here we highlight the advantages and disadvantages of the various approaches have been developed to address this problem.

Source: DOI: 10.1371/journal.pone.0096094

Source: DOI: 10.1371/journal.pone.0096094

Continue reading
Gene Expression - Molecular Biology

Organism-Specific Probe Selection and rRNA depletion

05/11/2014 by Mark Livingstone No Comments

As detailed in a previous post, rRNA depletion with kits such as Ribo-zero greatly increases the number of usable reads in RNASeq studies, but this one-size-fits-all approach is not appropriate for some researchers. In eurkaryotic studies, researchers often find that poly(A) enrichment using the BioMag® SelectaPure mRNA System making use of BioMag® Oligo (dT)20 Particles is a cost-effective means to separate mRNA from rRNA and tRNA. Prokaryotic mRNAs are not polyadenylated however, so poly(A) enrichment is not a possibility for researchers working with microorganisms. Although there exist rRNA depletion kits for bacteria, the organism-to-organism variability in rRNA sequences may lead to suboptimal depletion in some species and even the unintended depletion of specific mRNAs.

An article published in PLoS ONE (DOI: 10.1371/journal.pone.0074286) has described a computer program specifically for the purpose of designing rRNA depletion probes for various organisms. Using the example of the 16S and 23S rRNAs of Mycobacterium smegmatis, the authors report improved mRNA integrity and abundance using this approach compared to using MICROBExpress™.

The organism-specific probe selection software is available for download here. Once designed, researchers can purchase Biotin-TEG DNA oligonucleotides and BioMag® Nuclease-Free Streptavidin Particles for efficient depletion of rRNA from their organism of choice.

Organism-Specific Probe Selection and rRNA depletion. doi:10.1371/journal.pone.0074286.g001

Organism-Specific Probe Selection and rRNA depletion.
doi:10.1371/journal.pone.0074286.g001

Most popular posts

  • HeLa cells: Origin of this important cell line in life science research
  • How to choose the perfect buffer to get a pure, stabilised, functional protein
  • Monoclonal antibodies - all you need to know about antibody generation
My Tweets

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy

Copyright © 2018 - tebu-bio - visit our main website at tebu-bio.com

 

Loading Comments...