• Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
  • Facebook
  • LinkedIn
  • Twitter
  • Vimeo
Home
Research areas
    ADME-Tox
    Biomarkers
    Cell Biology and Signalling
    Cell Sourcing - Cell Culture Technologies
    Drug Discovery
    Gene Expression - Molecular Biology
    Stem Cells
    Supplying Discovery Tools
Contact us
Meet the authors
Tebubio's blog - Acting and reacting in life sciences and biotechnologies
  • Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
Supplying Discovery Tools

Nephropathy research toolbox: from ELISA to Arrays and Primary cells

05/07/2019 by Isabelle Nobiron, PhD No Comments

Nephropathy is a hot research topic, especially in relation to its link with Diabetes (already 6 500 publications so far referenced in pubmed to date for 2019, a third of them in relation to type I or type II diabetes). As nephropathy can lead to life endangering end-stage renal diseases (ESRDs) with a severe impact on life expectancy, a lot of research is being undertaken to find new drugs to beat this potentially severe condition. Several biomarkers of this pathology have already been identified such as CD27 antigen, kidney injury molecule 1 (KIM-1) and α1-microglobulin in relation to type I diabetes (1), in addition to the well known Clusterin, Cystatin-C, Microalbumin and Beta-2 Microglobulin.

Continue reading
Cell Biology and Signalling

Obesity (adipose tissue) and Diabetes – which ELISA tests, arrays and cellular models?

12/09/2017 by Isabelle Nobiron, PhD No Comments

If your research is related to obesity and adipose tissue, you may be interested by the selection I have performed below of immunoassays (including ELISA tests and antibody arrays), as well as primary cell models related to this topic.

Obesity and the diseases arising from it (diabetes, cardiovascular disease and cancer) constitute a major health challenge to the industrialized world. In the past decade, it has become apparent that adipose tissue is a major endocrine organ which secretes numerous soluble factors and regulates many processes related to glucose homeostasis, lipid and protein metabolism, inflammatory and immune responses…

Continue reading
Drug Discovery

cAMP signals visualized in live human pancreatic primary cells

21/07/2017 by Philippe Fixe, PhD No Comments
Montana Molecular cAMP green fluorescent sensor shows an increase of cAMP in human islets by Almaça et al. Cell 2016 DOI: http://dx.doi.org/10.1016/j.celrep.2016.11.072

In a recent publication, researchers from the University of Miami Miller School of Medicine (USA) describe that Serotonin released by human beta cell inhibits glucagon secretion by alpha cells. They demonstrated that this paracrine loop was mediated via the cAMP pathway. To do so, they captured in live human pancreatic islet cells cAMP signals using a specific fluorescent biosensor.

Continue reading
Cell Sourcing - Cell Culture Technologies

Human Islets for Research – Which factors affect their quality?

19/05/2017 by Jean-François Têtu, PhD No Comments
Human Pancreatic Islets - Prodo Laboratories

The islets of Langerhans are the regions of the pancreas that contain its endocrine (i.e., hormone-producing) cells. Discovered in 1869 by German pathological anatomist Paul Langerhans, the islets of Langerhans constitute approximately 1% to 2% of the mass of the pancreas. There are about one million islets distributed throughout the pancreas of a healthy adult human. Each is separated from the surrounding pancreatic tissue by a thin fibrous connective tissue capsule. The islets of Langerhans contain beta cells, which secrete insulin, and play a significant role in diabetes.

Islets are widely used for transplantation to restore beta cell function from diabetes, offering an alternative to a complete pancreas transplantation or an artificial pancreas. Because the beta cells in the islets of Langerhans are selectively destroyed by an autoimmune process in type 1 diabetes, islet transplantation is a means of restoring physiological beta cell function in patients with type 1 diabetes.

Human Islets for Research (HIR)® are primary human islets processed from organ donor pancreases that have been approved for research but not for clinical transplantation of either the  pancreas or the isolated islets. HIR® are obtained in a proprietary process of pancreas digestion and islet purification that results in uniformly high quality HIR® for delivery to diabetes  investigators. Quality Control (QC) testing is routinely performed prior to release to assure uniform quality and function of these islets available for research.

Continue reading

Page 1 of 3123»

Most popular posts

  • HeLa cells: Origin of this important cell line in life science research
  • From RUO to IVD - the acronym guide to reagents' intended use
  • How to choose the perfect buffer to get a pure, stabilised, functional protein
My Tweets

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy

Copyright © 2018 - tebu-bio - visit our main website at tebu-bio.com