• Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
  • Facebook
  • LinkedIn
  • Twitter
  • Vimeo
Home
Research areas
    ADME-Tox
    Biomarkers
    Cell Biology and Signalling
    Cell Sourcing - Cell Culture Technologies
    Drug Discovery
    Gene Expression - Molecular Biology
    Stem Cells
    Supplying Discovery Tools
Contact us
Meet the authors
Tebubio's blog - Acting and reacting in life sciences and biotechnologies
  • Home
  • Research areas
    • ADME-Tox
    • Biomarkers
    • Cell Biology and Signalling
    • Cell Sourcing – Cell Culture Technologies
    • Drug Discovery
    • Gene Expression – Molecular Biology
    • Stem Cells
    • Supplying Discovery Tools
  • Contact us
  • Meet the authors
Cell Biology and Signalling

6 popular Microtubule agents used in in vitro tubulin assays

10/09/2015 by Philippe Fixe, PhD No Comments
Tubulin / Microtubules: Structure and polarity of microtubules
Colchicine chemical structure (64-86-8)

Colchicine chemical structure (64-86-8).

Microtubules are key components of the cytoskeletal structure of eukaryotic cells. Composed of alpha- and beta- tubulin sub-units, microtubules are dynamic entities with pivotal cellular roles (e.g. division and mitosis). Because of these unique characteristics, the first microtubule-based anti-cancer drugs have been described in the early 70’s. Here, we will review the 6 most popular small compounds active on tubulin polymerization and microtubules which are regularly used in today’s microtubule-centred in vitro assays.

Microtubule depolymerizing/inhibitor agents

  1. Ansamitocin P3 (CAS# 66547-09-9) is a fungal metabolite from Actinosynnema pretiosum. Ansamitocin P3 is a maytansine analog which displays potent cytotoxicity against various human tumor cell lines. Maytansine (and analogs) cause extensive disassembly of microtubules by interacting with tubulin molecules.
  2. Colchicine (CAS# 64-86-8) is a naturally occurring alkaloid acting as an antimitotic agent. It binds to tubulin and depolymerizes microtubules. Colchine has been shown to induce apoptosis in a variety of cell lines.
  3. Nocodazole (CAS# 31430-18-9) is an anti-mitotic agent (cell cycle arrest at G2/M phase) disrupting microtubules by binding to ß-tubulin and thereby inhibiting microtubule dynamics. It causes a disruption of mitotic spindle function and fragmentation of the Golgi complex. Nocodazole also activates the JNK/SAPK signaling pathway and induces apoptosis in a variety of cell lines.
  4. Vinblastine sulfate (CAS# 143-67-9) is a semi-synthetic alkaloidal anticancer agent. It induces cell cycle arrest at G2/M phase by inhibiting mitotic spindle formation. Vinblastine sulfate inhibits normal microtubule assembly and induces aberant tubulin polymerization causing apoptosis. This compound also inhibits autophagosome maturation.

    Taxol chemical structure (33069-62-4).

    Taxol chemical structure (33069-62-4).

Microtubule stabilizing agents

  1. Docetaxel (CAS# 114977-28-5) is an antimitotic chemotherapeutic with reversible high-affinity binding to microtubules. It induces apoptosis in a variety of cancer cell lines. Nevertheless, tumor cells can quickly develop resistance to docetaxel via several mechanisms.
  2. Taxol (CAS# 33069-62-4) is a cancer chemotherapeutic agent (breast, non-small cell lung and ovarian cancers). It acts as a promoter of tubulin polymerization by stabilizing microtubules in vitro and in vivo leading to arrest of cells in the G2 and M phase of the cell cycle.

Looking for pure small molecules active on Microtubule and compatible with in vitro studies?

tebu-bio’s experts have selected high quality sources of active small molecules. Discover those related to tubulin and Microtubules right here.

Most popular posts

  • HeLa cells: Origin of this important cell line in life science research
  • How to choose the perfect buffer to get a pure, stabilised, functional protein
  • From RUO to IVD - the acronym guide to reagents' intended use
My Tweets

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy

Copyright © 2018 - tebu-bio - visit our main website at tebu-bio.com

 

Loading Comments...